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We consider the nonlinear interaction problem of surface waves with a tethered
near-surface buoy. Our objective is to investigate mechanisms for nonlinear short
surface wave generation in this complete coupled wave–buoy–cable dynamical system.
We develop an effective numerical simulation capability coupling an efficient and
high-resolution high-order spectral method for the nonlinear wave–buoy interaction
problem with a robust implicit finite-difference method for the cable–buoy dynamics.
The numerical scheme accounts for nonlinear wave–wave and wave–body interactions
up to an arbitrary high order in the wave steepness and is able to treat extreme motions
of the cable including conditions of negative cable tension. Systematic simulations
show that beyond a small threshold value of the incident wave amplitude, the buoy
performs chaotic motions, characterized by the snapping of the cable. The root
cause of the chaotic response is the interplay between the snapping of the cable
and the generation of surface waves, which provides a source of strong (radiation)
damping. As a result of this interaction, the chaotic buoy motion switches between
two competing modes of snapping response: one with larger average peak amplitude
and lower characteristic frequency, and the other with smaller amplitude and higher
frequency. The generated high-harmonic/short surface waves are greatly amplified
once the chaotic motion sets in. Analyses of the radiated wave spectra show significant
energy at higher frequencies which is orders of magnitude larger than can be expected
from nonlinear generation under regular motion.

1. Introduction
Extensible cables have been widely used to position or tow floating facilities such as

offshore platforms, ships and buoys in the ocean. Most previous studies on the subject
of the dynamics of tethered objects in waves have been limited to the prediction of
hydrodynamic loads on the structures and mooring systems. In the present study,
our main interest is the mechanisms of generating short free-surface waves by the
motion of moored near-surface objects which may be detectable by remote sensing.
For specificity, we consider the dynamics of a single near-surface spherical buoy
tethered to the bottom by a synthetic cable. We consider the nonlinear response of
the cable–buoy system subject to the influence of a regular incident wave and the
nonlinear free-surface pattern that results.

† Currently with Exxon Production Research Co., Houston, Texas, USA.
‡ Author to whom correspondence should be addressed.
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The problem we pose requires the effective solution of two coupled dynamical
problems. First is the nonlinear dynamics of a body interacting with ambient surface
waves. This problem for floating or submerged bodies is classical and has been studied
extensively. For large-amplitude (and arbitrary) body motions, the general nonlinear
problem must be solved numerically in the time domain, and three-dimensional results
are still quite limited (see e.g. Tsai & Yue 1996 for a review). The other problem is
that of a cable in arbitrary motion wherein both transverse and longitudinal motions
are important as well as the effect of bending stiffness when tension in the cable
becomes zero or negative. Despite the complexity, such simulations have recently
become possible (see e.g. Triantafyllou 1994 for a review).

The present work combines these two capabilities in nonlinear wave–body inter-
actions and tether mechanics to study the coupled dynamics of a submerged buoy.
Of special interest are the nonlinear mechanisms for the generation of surface dis-
turbances particularly in the higher-harmonic short-wavelength (relative to incident
waves) regime. Through our investigation, we identify two classes of mechanisms for
nonlinear short-wave generation.

(1) For relatively small buoy–tether motions, wherein the (positive) tension in
the cable is maintained, higher-harmonic surface waves are generated mainly via
nonlinear (sum-frequency) wave–wave and wave–body interaction mechanisms. The
amplitude of the mth harmonic wave is, in general, O(εm), where ε measures the
incident wave steepness. Although, the mth harmonic wave can be as short as m−2

that of the incident wave and may occur where there is an absence of ambient wave
energy, the amplitudes are increasingly small for larger m. Thus, this represents a
relative weak mechanism for detectable short waves.

(2) When the incident wave amplitude increases above a certain threshold, we
find a new cable–buoy–wave interaction mechanism wherein the cable tension may
alternately vanish and increase rapidly to large values in a cable ‘snapping’ motion.
The resulting buoy motion is in general chaotic and imparts a substantial amount
of energy into surface waves in a broad frequency range. Our calculations show,
for instance, appreciable radiated energy in frequencies as high as m ∼ O(10) for
ε ∼ O(0.1) and realistic cable–buoy properties/configuration. This is therefore a novel
and highly efficient mechanism for short-wave generation by a submerged tethered
body.

In § 2, we describe the physical problem and the mathematical formulations for the
wave–body interaction problem and the cable dynamic problem. To solve this coupled
hydrodynamic and dynamic interaction problem, we develop an effective numerical
scheme in § 3 by coupling an efficient high-order spectral method for the nonlinear
wave–body interaction (Liu 1994) and an implicit finite-difference method for the
nonlinear cable response (Tjavaras et al. 1998). In § 4, we present the simulation results
showing the regular and chaotic responses of the tethered buoy. Of special interest
are the free-surface wave patterns created by these motions, which are analysed. We
conclude in § 5.

2. Formulation of the nonlinear wave–buoy–cable interaction problem
The physical system under study consists of a near-surface buoy tethered to the

bottom through an extensible cable (see figure 1). Under the influence of incident
surface waves, the cable–buoy system is subject to oscillatory forces and is excited;
its motions, in turn, create free-surface waves. Our interests are the dynamics of the
tethered-buoy motion and the characteristics of the resulting radiated waves.
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Figure 1. A near-surface tethered buoy under waves.

For the present study, the nonlinear wave–body interaction problem is solved in
the context of potential flow and arbitrary body motions in the time domain. Viscous
effects on the body and the cable are accounted for with simple models of (constant)
drag coefficients in Morison’s formula applied using relative velocity including wave
and body motions. Within this context, the problem is treated in its generality,
including all nonlinearities for a three-dimensional response and wave generation.

For specificity, we consider a spherical buoy, diameter D. We assume a constant
density for the sphere, ρs, which is less than the water density ρ. The sphere is attached
at the centre to the upper end of a cable so that, in the absence of waves, the centre
of the sphere is at a distance h below the mean free surface. The lower end of the
cable is fixed on the bottom at a depth H .

We define a Cartesian coordinate system with z-axis vertical and positive upwards,
z = 0 coinciding with the undisturbed free surface. We assume that the cable–buoy
system is subject to the action of harmonic uni-directional incident waves, wavelength
λI , in the (x, z)-plane. Even under planar wave excitation, the motion of the cable–
buoy system may not be planar due to three-dimensional instability (cf. Tjavaras
et al. 1998). In this case, the position of the centre of the sphere is denoted by its
Cartesian coordinates (X,Y , Z). If the motion is (assumed) planar, it is convenient to
define the polar coordinates of the body centre, (r, θ), defined in the (x, z)-plane with
respect to the bottom attachment point (0, 0,−H) (see figure 1). In this paper, we
focus primarily on the planar motion case. The possibility of out-of-plane motions is
discussed in § 5.

The problem of nonlinear wave interactions with a tethered near-surface buoy
consists of two separate hydrodynamic problems which are coupled through the
motion of the buoy. The first problem involves wave diffraction and radiation by the
buoy; the second problem involves the mechanics of the cable under surface waves.
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These two problems are coupled at the buoy–tether interconnection, hence ultimately
their simulation requires coordinated simulation of both problems.

2.1. Equation of motion for the buoy

The motion of the buoy is governed by Newton’s second law:

Md2X

dt2
= B −W + F B + T , (2.1)

where X ≡ (X,Y , Z) denotes the centre position of the buoy, t the time, M the mass
of the buoy, B the buoyancy force on the buoy, W the weight of the buoy, F B the
hydrodynamic force on the buoy, and T the tension of the cable at the connection
with the buoy centre.

Equation (2.1) for the buoy motion couples the wave–buoy interaction problem
and the cable–buoy dynamic problem. The position and velocity of the buoy, X and
Ẋ ≡ V B , determine the diffracted and radiated wavefields and the hydrodynamic
force F B . At the same time, the magnitude and direction of the cable tension force
T is given by the solution of the cable dynamics for specified X and Ẋ (and cable
position and velocity).

2.2. Hydrodynamic force on the buoy

The hydrodynamic force on the body F B consists in general of a potential flow
contribution associated with wave diffraction and radiation, F Φ

B; and a viscous drag
effect associated with vortex shedding, F ν

B . The latter is generally unimportant in
the absence of current, and for small to moderate Keulegan–Carpenter number
Kc ≡ 2πe−kIhA/D, where kI , A are the incident wavenumber and wave amplitude.

For the potential flow contribution, we formulate the wave–buoy interaction prob-
lem in terms of the velocity potential Φ(x, t) which satisfies Laplace’s equation
(∇2Φ = 0) inside the fluid. On the instantaneous free surface, denoted by z = ζ(x, y, t),
Φ satisfies the nonlinear kinematic and dynamic boundary conditions:

ζt + Φxζx + Φyζy − Φz = 0,

Φt + 1
2
|∇Φ|2 + gζ = 0,

 (2.2)

where g is the gravitational acceleration. On the body, SB(t), the no-flux condition
applies

∂Φ

∂n
= n · V B on SB(t) (2.3)

where n = (nx, ny, nz) is the unit normal into the body. On the bottom, z = −H , we
have Φz = 0, or ∇Φ→ 0 as z → −∞ for deep water (H � λI ).

For initial conditions, at t = 0, the free-surface elevation and velocity potential
as well as the position and velocity of the body are prescribed, typically quiescent
conditions for the flow and equilibrium position for the cable–buoy system. The initial-
boundary-value problem for the velocity potential Φ is complete with the imposition
of a radiation condition at the far field, in this case, a physical argument that the
diffracted and radiated waves by the body propagate away from the body.

In terms of the velocity potential Φ, the hydrodynamic pressure (P ) on the buoy is
determined according to Bernoulli’s equation:

P

ρ
= −Φt − 1

2
∇Φ · ∇Φ. (2.4)
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The wave force F Φ
B on the buoy is obtained by integration of the pressure over the

body surface:

F Φ
B = ρ

∫ ∫
SB

(Φt + 1
2
∇Φ · ∇Φ)n ds. (2.5)

To account for the flow separation effect, we include a viscous drag force on the
body which we estimate using a quadratic (Morison’s) formula:

F ν
B = − 1

2
ρCDAp(V B − ∇ΦI )|V B − ∇ΦI | (2.6)

where CD is the drag coefficient and Ap the projected area of the body, ΦI is the
velocity potential for the incident wave field, and ∇ΦI is evaluated at the centre of
the body. Note that the treatment (2.6) for the viscous force on the body is consistent
with that for the cable (§ 2.3). For the problem we consider, the force on the body is
dominated by F Φ

B and the inclusion of (2.6) has in fact minimal effect on the final
results.

For Kc � 1, the hydrodynamic load is dominated by flow separation and added-
mass effects and the wave diffraction and radiation effect is negligible. In this case, a
simple model can be written for the total hydrodynamic force F B with (2.5) replaced
by an added-mass term only, namely Morison’s formula:

F B = −Ma

d

dt
(V B − ∇ΦI ) + ρV d

dt
∇ΦI − 1

2
ρCDAp(V B − ∇ΦI )|V B − ∇ΦI | (2.7)

where the substantial derivative d/dt ≡ ∂/∂t+ (∇ΦI −V B) · ∇, Ma is the added mass
of the buoy, and V the volume of the buoy. On the right-hand side of (2.7), the first
term represents the added-mass force, the second term the buoyancy force due to the
unsteady ambient flow, and the third term the viscous drag force.

2.3. Equations for the cable dynamics

We model the cable as a slender rod and describe the cable motion in terms of its
centreline. The equations of motion for the cable include the balance of forces, the
balance of moments and the compatibility of the cable geometry. To avoid the ill-
posed problem when the tension of the cable becomes vanishingly small or negative
(Triantafyllou & Howell 1994), the bending stiffness of the cable is included.

We define a local Lagrangian reference frame with three unit vectors τ̂ , n̂, and b̂
in the tangential, normal, and bi-normal directions of the cable, respectively. Each
point along the cable is represented by its Lagrangian coordinate s which is equal to
the physical length of the cable from the low (attachment) point. This Lagrangian
reference frame can be related to the space-fixed Cartesian coordinate system (x, y, z)
by the relation:  τ̂

n̂

b̂

 = C

 î

ĵ

k̂

 (2.8)

where î, ĵ , and k̂ are the unit vectors in the x-, y- and z-directions. Here the rotation
matrix C(3× 3), which varies both along the cable span and with time, is represented
in terms of four Euler parameters (β0, β1, β2, β3). Exact expressions for these are given
in Tjavaras et al. (1998).

To derive the differential equations of motion, consider an infinitesimal segment of
the cable which has an unstretched length δs, centred at a point s at a position R(s, t),
as shown in figure 2. Under the applied internal and external forces and moments, the
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Figure 2. Reference system for the cable dynamics.

segment stretches to a length δs1 and the mass per unit length of the cable segment is
reduced from mc to mc1. From the conservation of mass of the cable, mc1 = mc/(1 + ε)
where the strain of the cable is ε ≡ δs1/δs− 1.

The forces on the cable segment can be considered to consist of the internal force,

T = T τ̂ + Snn̂+ Sbb̂ where T is the effective tension in the longitudinal direction and
Sn and Sb are shear forces in the transverse directions, and the external hydrodynamic
force F c (Triantafyllou 1994). Balancing these forces, we obtain

mc1
DV

Dt
=

DT

Ds1
+ F c (2.9)

where the cable velocity is V ≡ ∂R/∂t = Uτ̂ + V n̂+W b̂.
The hydrodynamic force on the cable, given by Morison’s formula, takes the form

F c

ρ
= −

{
πdCDt

2(1 + ε)1/2
ur|ur|

}
τ̂

−
{

dCDp

2(1 + ε)1/2
vr(v

2
r + w2

r )
1/2 − πρd2v̇ − 4mav̇r

4ρ(1 + ε)

}
n̂

−
{

dCDp

2(1 + ε)1/2
wr(v

2
r + w2

r )
1/2 − πρd2ẇ − 4maẇr

4ρ(1 + ε)

}
b̂, (2.10)

where d and ma are the diameter and the added mass (per unit length) of the cable,
and CDt and CDp the drag coefficients in the tangential and normal directions. In
(2.10), (u, v, w) are the fluid velocities in the (τ, n, b)-directions; and ur ≡ U − u,
vr ≡ V − v and wr ≡ W − w are the velocity components of the cable relative to the
fluid.
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Expanding the total derivative terms and making use of mass conservation, we can
rewrite (2.9) in the form

mc

(
∂V

∂t
+Ω× V

)
=
∂T

∂s
+ Λ× T + (1 + ε)F c, (2.11)

where Ω(s, t) is the angular velocity of the local Lagrangian reference frame with
respect to the global Cartesian coordinate system and Λ(s, t) ≡ (Λ1, Λ2, Λ3) is the
Darboux vector, which is defined, as in Landau & Lifshitz (1959), to measure the
material torsion of the cable but not the geometric torsion of the line. For more
detailed definitions of Ω and Λ, see Tjavaras et al. (1998).

The cable is in general under the action of the internal moment Q = Qττ̂+Qnn̂+Qbb̂.
The moment equation is given by the balance of the internal moment and the moment
caused by the internal force T :

∂Q

∂s
+ Λ×Q + (1 + ε)3τ̂ × T = 0. (2.12)

The components of Q follow the standard Kirchhoff assumptions on rod deformation
and are given by Qτ = GIpΛ1, Qn = EIΛ2, and Qb = EIΛ3, where EI and GIp are the
bending and torsional stiffnesses of the cable, respectively.

The compatibility of the cable deformation requires that the position vector of the
cable R(s, t) and its partial derivatives are continuous in both t and s. This condition
leads to the following relation between the cable velocity V and the strain of the
cable ε:

∂ε

∂t
τ̂ + (1 + ε)Ω× τ̂ =

∂V

∂s
+ Λ× V . (2.13)

The deformation of the cable is related to the tension T by the stress–strain
relation which can take the general form T = f(ε) depending on the cable property.
For simplicity, we adopt a linear stress–strain relation: T = νε with ν = 5×104 N m−2,
which is a typical value for a nylon cable.

The governing equations for the cable dynamics can be summarized in a combined
vector form:

∂Y

∂s
+H(Y )

∂Y

∂t
+P(Y ) = 0, (2.14)

where Y denotes the unknown vector

Y = [ε Sn Sb U V W β0 β1 β2 β3 Λ1 Λ2 Λ3]
T . (2.15)

The coefficient matrix H and vector P are nonlinear functions of unknown Y and
their exact expressions are given in Tjavaras et al. (1998) and are not repeated here.

For boundary conditions, at the low end of the cable the position is fixed (V = 0);
while at the top end the position and velocity are equal to those of the centre of the
buoy.

3. Numerical method
For the simulation of the nonlinear dynamics of the combined wave–buoy–cable

problem, we develop a computational scheme which couples an efficient high-order
spectral method for nonlinear wave–body interactions with an implicit finite-difference
method for the cable dynamics. The resulting method accounts for nonlinear wave–
wave and wave–body interactions up to an arbitrary high order in wave steepness and
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includes the effect of vanishing tension (and bending moment) in the cable. As we shall
see (see § 4), this scheme is capable of simulating highly transient snapping motion
of the buoy–cable system and quantifying the resulting high-frequency free-surface
signature associated with such motions.

3.1. The high-order spectral method for wave–body interactions

The high-order spectral (HOS) method was originally developed by Dommermuth &
Yue (1987) for nonlinear wave–wave interactions and was later extended to nonlinear
wave–body interactions by Liu, Dommermuth & Yue (1992) (see also Liu 1994; Liu
& Yue 1998). This is a time-domain method which employs spectral representations
for both the free surface and body and accounts for nonlinear wave–wave and wave–
body interactions up to arbitrary order M in wave steepness. Using pseudo-spectral
treatment and fast transform techniques, the method obtains exponential convergence
with the number of free-surface (or body) modes and requires a computational effort
which increases only linearly with the number of spectral modes and with the order M.

In terms of the surface potential ΦS (x, y, t) ≡ Φ(x, y, z = ζ, t), we write the free-
surface boundary conditions (2.2) in Zakharov form (Zakharov 1968):

ζt + ∇ζ · ∇ΦS − (1 + ∇ζ · ∇ζ)Φz(x, y, ζ, t) = 0,

ΦSt + gζ + 1
2
[(ΦSx)2 + (ΦSy )2]− 1

2
(1 + ∇ζ · ∇ζ)Φ2

z(x, y, ζ, t) = 0.

 (3.1)

These equations can be used as evolution equations for the free-surface elevation ζ,
and surface potential ΦS , provided that the free-surface velocity Φz(x, y, ζ, t) can be
obtained (from the boundary-value problem for Φ).

At a given time t, with known surface elevation ζ(x, y, t) and potential ΦS (x, y, t),
and position X (t) and velocity V B(t) of the buoy, the boundary-value problem for
the velocity potential Φ(x, t) is completely specified. To solve this boundary-value
problem, we consider small surface wave steepness kIA ≡ ε � 1 and expand the
velocity potential into a perturbation series up to order M in ε:

Φ =

M∑
m=1

Φ(m), (3.2)

where Φ(m) = O(εm). We further expand the perturbation potential evaluated on the
free surface Φ(m)|z=ζ into Taylor series about the mean free surface z = 0. Collecting
terms at each order, we obtain a sequence of Dirichlet conditions for the perturbation
potential Φ(m), m = 1, . . . ,M, applied on the mean free surface:

Φ(1) = ΦS on z = 0;

Φ(m) = − m−1∑
l=1

ζl

l!

∂l

∂zl
Φ(m−l) on z = 0, m = 2, 3, . . . ,M.

 (3.3)

On the body, SB(t), the substitution of (3.2) into (2.3) leads to a sequence of Neumann
conditions for Φ(m):

Φ(1)
n = V B(t) on SB(t);

Φ(m)
n = 0 on SB(t), m = 2, 3, . . . ,M.

}
(3.4)

The boundary conditions (3.3) and (3.4), along with the Laplace equation, ∇2Φ(m) = 0,
and the bottom condition, Φ(m)

z = 0 on z = −H , (or for deep water |∇Φ(m)| → 0
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as z → −∞) define a sequence of boundary-value problems for the perturbation
potential Φ(m), m = 1, 2, . . . ,M, in the domain 0 > z > −H (z 6 0 for deep water) and
x outside the body. For calculations, we impose doubly-periodic boundary conditions
at large distances x = ±L and y = ±L in the horizontal plane.

To solve the boundary-value problem at each order m, we distribute dipoles µ(m)

on the mean free surface and sources σ(m) on the instantaneous body SB(t). We write
µ(m) in a double Fourier series:

µ(m)(x, y, t) =
∑
p

∑
q

µ(m)
pq (t)eiπ(px/L+qy/L), (3.5)

and σ(m) in a Chebyshev–Fourier series:

σ(m)(α, ϕ, t) =
∑
k

∑
`

σ
(m)
k` (t)T`(1− 2α/π)eikϕ. (3.6)

Here µ(m)
pq and σ

(m)
k` are the unknown modal amplitudes, α and ϕ are respectively the

polar and azimuthal angles of a point on the body with respect to the body centre,
and T` is the `th-order Chebyshev polynomial of the first kind. In terms of µ(m)

pq and

σ
(m)
k` , the perturbation potential at each order m can be expressed as

Φ(m)(x, t) =
∑
p

∑
q

µ(m)
pq (t)ΨFpq(x) +

∑
k

∑
`

σ
(m)
k` ΨBk`(x), (3.7)

where the free-surface and body basis functions ΨFn(x) and ΨBn(x) are given by

ΨFpq(x) =

∫ L

−L

∫ L

−L
Gz′(x; x′, y′, 0)eiπ(px′/L+qy′/L)dx′dy′, (3.8)

ΨBk`(x) =

∫ ∫
SB

G(x; α′, ϕ′)T`(1− 2α′/π)eikϕ′ds′. (3.9)

In (3.8) and (3.9), G is the doubly-periodic Rankine Green function which may be
represented as a doubly-infinite sum of image sources. For computations, efficient
evaluation of G using summation formulas is available (Newman 1992). With the
construction (3.7)–(3.9), Φ(m) satisfies all the conditions of the boundary-value prob-
lem except for the boundary conditions (3.3) and (3.4) on z = 0 and SB(t) respectively.
Substituting (3.7) into (3.3) and (3.4), the modal amplitudes µ(m)

pq and σ
(m)
k` are deter-

mined successively for m = 1, . . . ,M, in terms of the known free-surface elevation and
potential as well as the position and velocity of the body.

After the boundary-value problems for Φ(m) are solved up to the desired order M,
the (total) vertical velocity on the free surface is obtained by direct differentiation
and obtains the form

Φz(x, y, ζ, t) =

M∑
m=1

M−m∑
l=0

ζl

l!

∂l+1

∂zl+1
Φ(m)(x, y, 0, t). (3.10)

Here (and in (3.3)), the first z-derivatives are obtained from (3.7) in terms of the modal
amplitudes µ(m)

pq and σ
(m)
k` , and all higher z-derivatives are then found using Laplace’s

equation: Φ(m)
zz =−Φ(m)

xx −Φ(m)
yy , Φ(m)

zzz = −(Φ(m)
z )xx− (Φ(m)

z )yy , . . . , and the (x, y)-derivatives
are readily evaluated in spectral space.

Knowing the surface vertical velocity Φz(x, y, ζ, t), the evolution equations (3.1) can
be integrated in time for the new values of ΦS (x, y, t+ ∆t) and ζ(x, y, t+ ∆t) using an
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explicit scheme, say, a fourth-order Runge–Kutta scheme. Here ∆t is the time step for
the wave–body problem subject to a requirement for stability (see e.g. Dommermuth
et al. 1988). The process is repeated starting from initial conditions. The potential on
the body is available from (3.7) and the pressure on the body evaluated according to
(2.4).

3.2. Implicit finite-difference method for the buoy–cable dynamics

We solve the governing differential equations for the motion of the buoy–cable system,
(2.1) and (2.14), using an implicit finite-difference scheme. The discrete form of the
equations is derived using the so-called box method and the resulting system of
nonlinear equations is solved by iterations with relaxation (details are in Tjavaras
1996). According to Wendroff (1960), this scheme is unconditionally stable and
convergent and retains second-order accuracy in space and time.

For the buoy, given its position X n−1 and velocity V n−1
B at time tn−1, we find the

velocity of the buoy V n
B at the new time, tn, from the discrete form of (2.1):

MV n
B − V n−1

B

δt
= B −W + F

n−1/2
B + T n−1/2, (3.11)

where tn ≡ nδt and δt is the time step for the buoy–cable dynamics problem. The
new position of the buoy X n is obtained by integration of the buoy velocity in time:

X n = X n−1 + 1
2
δt(V n

B + V n−1
B ). (3.12)

In (3.11), the wave force F
n−1/2
B is determined by extrapolation based on known

previous values of F B (obtained from the wave–body interaction problem with HOS).
In the implicit scheme, the tension force T n−1/2 approximated by (T n + T n−1)/2 is
solved simultaneously with the cable dynamics problem.

For the cable, given the values of the variable Y n−1 at time tn−1, we seek the
unknown variable Y n at time tn from the governing equation (2.14). To do that,
we divide the cable into Nc − 1 segments separated by Nc collocation points, j =
1, 2, . . . , Nc. We write (2.14) in a discrete form at the centre of each computational ‘box’
formed by the time and space indices n and j. At the centre of the ‘box’ (n− 1

2
, j− 1

2
),

we evaluate Y and its derivatives by

(Y )n−1/2,j−1/2 = 1
4

(
Y n−1,j−1 + Y n−1,j + Y n,j−1 + Y n,j

)
, (3.13)(

∂Y

∂t

)
n−1/2,j−1/2

=
1

2

(
Y n,j−1 − Y n−1,j−1

δt
+
Y n,j − Y n−1,j

δt

)
, (3.14)(

∂Y

∂s

)
n−1/2,j−1/2

=
1

2

(
Y n−1,j − Y n−1,j−1

δsj−1

+
Y n,j − Y n,j−1

δsj−1

)
. (3.15)

Here δsj−1 represents the unstretched length of the cable segment between the grid
points j−1 and j. Note that δs can be different along the cable and smaller segments
can be used, say, at the ends of the cable where the variations are large.

With (3.13), (3.14) and (3.15), the cable equation (2.14) can be rewritten in the
discrete form

2δt(Y n,j − Y n,j−1) + δtδsj−1(Pn,j +Pn,j−1) + δsj−1(Hn,jY n,j +Hn,j−1Y n,j−1

+Hn−1,jY n,j +Hn−1,j−1Y n,j−1 −Hn,jY n−1,j −Hn,j−1Y n−1,j−1)

= − 2δt(Y n−1,j − Y n−1,j−1)− δtδsj−1(Pn−1,j +Pn−1,j−1)

+ δsj−1(Hn−1,jY n−1,j +Hn−1,j−1Y n−1,j−1), j = 2, 3, . . . , Nc. (3.16)
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Equation (3.16) together with (3.11) and (3.12) as well as the boundary conditions
at the lower attachment point forms a system of 13Nc nonlinear equations for 13Nc

unknowns (Y n,j , j = 1, 2, . . . , Nc), which we solve iteratively using a relaxation method.

3.3. Numerical implementation

The simulation of the coupled nonlinear cable–buoy and buoy–wave interaction
problem consists of three main steps. Beginning from initial values of ΦS , ζ, X and
V B , at each time t: (I) solve the boundary-value problem for Φ(m)(x, t), m = 1, . . . ,M,
and evaluate Φz(x, y, z = ζ, t) and F B(t); (II) solve (3.16), (3.11) and (3.12) for new
values of Y (t+ ∆t), X (t+ ∆t) and V B(t+ ∆t); (III) integrate (3.1) forward in time for
ΦS (x, y, t+ ∆t) and ζ(x, y, t+ ∆t). Repeat (I)–(III) with t+ ∆t→ t.

Note that, in practice, the time scales of the wave–body and cable dynamics are
disparate and δt � ∆t in general. Thus, step (II) above typically represents many
(∼ ∆t/δt) steps of the cable equation integration with intermediate values of FB
obtained by extrapolation of previous values of FB given at ∆t intervals.

For the wave–body problem (step I) the numbers of free-surface and body spectral
modes are, in practice, truncated at suitable numbers, say Nf for ΨFpq and Nb for
ΨBk`, and the spectral expansions in (3.5), (3.6), and (3.7) are expected to converge
exponentially fast with increasing Nf and Nb. The boundary-value problems are solved
using a pseudo-spectral approach, wherein all the spatial derivatives are evaluated
in the spectral representation, while nonlinear products (such as those in (3.3) are
computed in physical space at discrete control points. The rapid transformations
between the two representations are effected by fast-Fourier transforms. (Details of
the implementation can be found in Liu et al. 1992.)

For the overall problem, the static solution of the cable–buoy problem is chosen
as the initial condition for the cable–buoy system. For incident waves, we choose
exact Stokes waves (Schwartz 1974) of steepness ε = kIA, period τI and wavelength
λI , and select a periodic domain of length and width 2L = NwλI , i.e. Nw complete
waves in both horizontal dimensions. The far-field condition of no reflected waves
is accomplished using this relatively large (doubly-)periodic computational domain.
We place the buoy at the centre of the (square) domain, and, to avoid reflections
for long-time simulation, we taper out the wave disturbances near the horizontal
boundaries at each time step. With this tapering, the final results are unaffected when
the size of the domain L is further increased (see Dommermuth & Yue 1988; Liu et
al. 1992 for details).

3.4. Convergence tests

We perform systematic numerical tests to verify the accuracy and convergence of the
present numerical method.

We consider a spherical buoy (diameter D) connected to the bottom (at depth
H/D = 16.7) by a synthetic cable of unstretched length l0/D = 13.3, diameter d0/D =
6.7× 10−3, and density ρc/ρ = 1.11. We consider a single incident wave, wavenumber
kID = 0.24 and amplitude kIA = 0.13. The sphere is given a mass of M = 0.91ρV,
i.e. 9% buoyancy. The static tension of the cable at the connection with the buoy is
thus Ts = 0.09ρgV. Under static condition, the cable has a stretched length of l0 + ∆l
with ∆l ' 0.04l0 as a result of the buoyancy of the sphere. The mean submergence of
the centre of the sphere is therefore h/D = 2.8. For this problem, the drag coefficients
set to be CD = 0.2 for the sphere, and CDt = 0.1 and CDp = 1.0 for the cable.

To demonstrate convergence, we present and compare the results for the tension
of the cable, T (equal to |T |), at the connection point at the (centre of the) sphere.
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Nf Nb Nc ∆t/δt M = 1 M = 2 M = 3

32×32 8×8 200 20 12.068 12.158 12.165
64×64 8×8 200 20 11.939 12.031 12.038

128×128 8×8 200 20 11.946 12.035 12.041

128×128 4×4 200 20 11.652 11.743 11.750
128×128 4×8 200 20 12.010 12.102 12.106
128×128 8×8 200 20 11.946 12.035 12.041

128×128 8×8 50 20 11.894 11.984 11.989
128×128 8×8 100 20 11.931 12.022 12.029
128×128 8×8 200 20 11.946 12.035 12.041

128×128 8×8 200 5 11.712 11.801 11.808
128×128 8×8 200 10 11.887 11.972 11.980
128×128 8×8 200 20 11.946 12.035 12.041

Table 1. Convergence of the upper-end cable tension, T/(TskIA), at time t = τI
for different values of computational parameters.

For the wave–body problem itself, the convergence behaviour of the fourth-order
Runge–Kutta scheme with time step ∆t is well established (e.g. Dommermuth et al.
1988; Liu et al. 1992). Table 1 shows the results for T at time t = τI for varying
perturbation order M; numbers of free-surface and body modes Nf , Nb; number of
cable segments Nc; and cable integration time step δt. The computational domain is
fixed at Nw = 4, and ∆t = τI/50. The exponential convergence of the results with
increasing Nf , Nb and M can be observed. The expected second-order convergence
rates with Nc and with δt are also obtained.

For chaotic motions (with flat power spectra), it is in general difficult to fully
resolve all the spatial/temporal scales. Nevertheless, based on results such as those in
table 1 and a requirement that maximum errors for the results be less than ∼ 1%, we
use, for subsequent computations, L = 2λI , Nf = 128 × 128, Nb = 8 × 8, Nc = 200,
and ∆t = τI/50 = 20δt. To capture the essential nonlinear wave–wave interactions,
unless otherwise noted, HOS is applied with M = 3.

4. Numerical results
Our interest is the mechanisms for the generation of short surface waves by a

submerged tethered buoy. To be specific, we consider the same cable–buoy system
and configuration (including water depth and incident wavelength) as in § 3.4 and
study the effects of varying incident wave amplitudes. We remark here that the
physical and geometric parameters of this buoy–cable system are not atypical of such
underwater moored buoys.

Even in the presence of planar incident waves, the motions of the buoy and cable
may not remain planar under certain conditions (cf. Tjavaras et al. 1998). Although
the methodology and codes of § 3 we develop are applicable for general three-
dimensional motions, we assume below that the buoy–cable motions are restrained
in the plane of the wave (x, z-plane). The associated free-surface disturbances are,
of course, fully three-dimensional. The possible three-dimensional response of the
buoy–cable is discussed in § 5 where an example is also given.
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Figure 3. Time history of the top-end cable tension T (t) for wave amplitude kIA = 0.016 with
hydrodynamic load on the buoy obtained using (a) complete wave diffraction theory (HOS, M = 3);
and (b) approximation using Morison’s formula (2.7) (MF).

Our simulations show that the cable motion is regular only for very small incident
amplitudes (see figure 20). Beyond a threshold value in the incident wave amplitude,
the buoy performs chaotic motions as a result of snapping of the tether. Such
snapping motions are found to be chaotic in nature and provide an extremely effective
mechanism for short-wave generation. Thus, compared to the regular motion case,
the generated high-harmonic/short waves are greatly amplified once snapping motion
sets in.

4.1. Regular motion

We consider a small incident wave amplitude corresponding to steepness kIA = 0.016.
Figure 3(a) shows the time history of the top-end cable tension. As expected for
such small incident waves, the cable retains a positive tension T at all times and
the cable–buoy system behaves like a (taut) inverted pendulum in oscillation. In
the numerical simulations, the motion of the buoy is started abruptly from rest
in an incident wave field. The tension T (t) thus contains, in addition to the forcing
response, a transient response associated with the abrupt start. This transient response
decays exponentially with time with decay rates associated with (hydrodynamic drag
and wave) damping. From figure 3(a), steady state (limit cycle) in T obtains after
O(30) incident periods. For this relatively small incident amplitude, the steady-state
results exhibit very small (barely discernible) nonlinear sub/super-harmonic energy
content.
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Figure 4. Time history of the buoy radial motion ∆r(t) for wave amplitude kIA = 0.016 with
hydrodynamic load on the buoy obtained using (a) HOS (M = 3); (b) MF.

For later reference, and also to evaluate the importance of wave scattering especially
radiation damping, we obtain results for the combined wave–buoy–cable problem
using a simple Morison-formula-type approximation, (2.7), instead of the nonlinear
wave–body simulation using HOS. The corresponding results using (2.7) (hereafter
referred to as MF as different from HOS) for the top-end cable tension T are
shown in figure 3(b). Not surprisingly, for the relatively small buoy motions for this
incident wave amplitude, the linear wave damping is much larger than quadratic
viscous damping, and the start-up transients in the MF results decay unrealistically
slowly. The relative magnitudes and roles of the linear wave (HOS) versus quadratic
viscous (MF) damping turn out to play an important part in the qualitatively different
behaviours of the system when the incident amplitude is increased, as we shall see in
§ 4.2.

The motion of the buoy in the radial direction, ∆r(t), is closely associated with the
tension of the cable, which provides the restoring effect to the buoy motion. As shown
in figures 4(a) and 4(b) for HOS and MF respectively, the radial buoy motion is
similar to that of the top-end cable tension. As in the case of the tension, the neglect
of linear wave damping leads to slow decay of initial transients although the steady
states (when reached) are quite similar. Analogous results and observations are also
obtained for the angular motion ∆θ(t) of the buoy and are not presented here.

A useful way to analyse the results of figures 3 and 4, especially as a measure of
the transfer of incident wave energy to high frequencies, is to obtain the frequency
composition of, say, the buoy response. For the radial buoy motion, for example, the
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Figure 5. Amplitude spectra of the buoy radial and angular motions, ∆̃r and ∆̃θ for wave
amplitude kIA = 0.016 with hydrodynamic load on the buoy obtained using: HOS (M = 3) (——)
and MF (- - -).

value of the amplitude spectrum at frequency ω is defined by

∆̃r(ω) =

∣∣∣∣ 1

nτI

∫ τ0+nτI

τ0

∆r(t)eiωtdt

∣∣∣∣ . (4.1)

Similar expressions hold for the amplitude spectra of the buoy angular motion ∆̃θ,
etc.

Figure 5 shows sample amplitude spectra for the radial and angular motions ∆̃r(ω)

and ∆̃θ(ω) (obtained using n = 20 and τ0 = 40τI in (4.1)). As expected, the spectra are
dominated by responses at the forcing frequency, ωI = 2π/τI , and at the (fundamental)
natural frequencies in the radial (ωnr) and angular (ωnθ) directions respectively. These
natural frequencies can be estimated theoretically or numerically. For the present
system, they are respectively ωnr/ωI ≈ 0.8 and ωnθ/ωI ≈ 0.16. For the radial motion,
the ωnr start-up transients are present in the MF approximation but are effectively
damped out by wave radiation in the complete (HOS) result (cf. figure 4). For the
angular motion, the fundamental natural frequency is low (wavenumber at natural
frequency is knD ≈ 0.006) and the wave damping at this frequency is negligibly small
(according to linear theory, e.g. Newman 1993, wave damping coefficient scales as
∼ (knD)3 for knD � 1). The spectra using HOS and MF both exhibit the start-up
transients at ωnθ and the qualitative difference between them is small.

4.2. Chaotic motion

In the preceding section, the wave amplitude is extremely small both in terms of wave
steepness kIA = 0.016, and relative to the buoy geometry: A/D ≈ 0.07, A/h ≈ 0.02.
For somewhat increased incident amplitudes (still not large relative to steepness or
geometry), it turns out the taut-inverted-pendulum-like motions of § 4.1 are no longer
obtained. Instead, a complex dynamics involving vanishing tension and snapping of
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Figure 6. Time history of the top-end cable tension T (t) for wave amplitude kIA = 0.13 with
hydrodynamic load on the buoy obtained using (a) complete wave diffraction theory (HOS, M = 3);
and (b) approximation using Morison’s formula (2.7) (MF).

the cable, chaotic buoy motion, and short-wave generation on the surface is found.
For illustration, we consider a moderate incident wave steepness of kIA = 0.13 in
the following. The issue of the threshold incident amplitude for such behaviour is
discussed in § 4.4.

4.2.1. Cable snapping

Loss of cable tension happens in a part of the motion cycle when the cable is
under virtual compression due to large buoy motion along the negative (towards the
anchor) tangential direction. Under these conditions, a cable without bending stiffness
constitutes an ill-posed problem (Triantafyllou & Howell 1994). The inclusion of the
bending terms, albeit very small, turns the problem into a well-posed one. In this case,
the cable sustains a small negative tension while undergoing dynamic buckling at a
(usually) high-order mode. At the opposite part of the cycle, i.e. when the buoy moves
away from the anchor, there is a rapid built-up of the tension. The buoy is eventually
arrested by this dynamic tension, which can become very large and impulsive in
nature, constituting a so-called cable snapping phenomenon.

Figure 6(a) shows this behaviour in the top-end tension T for incident wave
kIA = 0.13. The time history shows periods when T (t) is zero or (slightly) negative,
separated by sharp spikes. The durations of these low-tension periods and spikes, as
well as the amplitudes of the spikes, are quite irregular. The irregular motion itself
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appears to switch between two different modes both of which are dominated by cable
snapping. The two modes differ qualitatively in terms of the ‘average’ peak amplitude
and the ‘average’ period between snapping spikes. Referring to figure 6(a) (see also
figure 7a), we identify the two modes: mode A (e.g. for t/τI . 25, ∼ 85 < t/τI . 95,
etc.) characterized by larger average peak amplitude and lower average snapping
frequency; and mode B (e.g. for ∼ 25 < t/τI . 85, ∼ 95 < t/τI . 120, etc.)
characterized by lower peak amplitudes and higher frequencies. A more careful
examination (see also figure 8 for the spectra) reveals that the snapping frequency
for mode B is close to that of the incident wave, while mode A is approximately a
sub-harmonic with characteristic frequency half that of ωI .

If wave damping effect is ignored, figure 6(b), the MF approximation prediction
again shows the irregular behaviour but now without the switching of modes (with
mode B effectively absent). Thus, the presence of a linear damping by wave radiation
appears to be necessary for the appearance of two competing chaotic modes.

4.2.2. Buoy motion

We will find that the motion corresponding to figure 6 is in fact chaotic. Indeed, the
characteristic behaviour is qualitatively similar to that of the so-called ‘bouncing-ball’
problem (Shaw 1985), namely the bouncing motion of an elastic ball confined in
an oscillating closed box. Our numerical simulations reveal that the mechanism of
chaotic motion of the buoy constrained by a snapping cable is as follows: (a) at some
time, as a result of wave excitation on the buoy, the total tension of the cable drops to
zero or (slightly) negative while the compressing motion of the buoy continues; (b) in
the absence of tension, the collapsing cable undergoes a classical buckling instability;
(c) some time later, as the cable is reloaded by the wave force on the buoy, the
cable tension rises rapidly. The direction of the tension in (c) depends on the precise
orientation of the cable at its connection with the buoy at the instant the spike-like
tension is applied. Due to the instability in (b), this dependence is unpredictable and
extremely sensitive. Note that the timing of (c) (as well as (a)) depends on the wave
exciting force (amplitude and direction) on the buoy, which in turn is a function of
the (chaotic) motion (history) of the buoy, and hence is itself chaotic.

Figure 7 shows time histories of the radial motion of the buoy ∆r(t) with HOS
(M = 3) and with the MF approximation. The time behaviours are similar to T
(figure 6). For the result with nonlinear wave diffraction, figure 7(a), the switching
between two competing chaotic modes (A of relatively larger amplitude and longer
characteristic period than B) is even more evident here for the radial motion than in
figure 6(a).

Frequency analyses of ∆r(t) in figure 7(a) is presented in figure 8. By selecting the
initial time τ0 in (4.1), we are able to obtain the characteristic amplitude spectra for
modes A and B separately. Unlike the regular motion case (cf. figure 5), the amplitude
spectra in the present case are broad band with slow decay with increasing frequency
for large frequency. Such spectra indicate that the radial buoy motion is chaotic.
Comparing modes A and B, figure 8 shows that mode A has greater total energy
and with almost all of the added energy concentrated at low frequencies. The peak
energy of mode B appears near the incident frequency while that of mode A appears
to be at a first sub-harmonic (ω/ωI ≈ 0.5). These support the observations based on
figures 6(a) and 7(a).

Results for the angular motion are qualitatively similar to those for the radial
motion presented here and are not repeated.



322 Q. Zhu, Y. Liu, A. A. Tjavaras, M. S. Triantafyllou and D. K. P. Yue

6

4

2

0

–2

–4

–6

–8
0 50 100 150 200

(a)

Dr
A

6

4

2

0

–2

–4

–6

–8
0 50 100 150 200

(b)

Dr
A

t /sI

Figure 7. Time history of the radial motion of the buoy for kIA = 0.13 with the hydrodynamic
load on the buoy obtained using (a) HOS (M = 3); and (b) MF.

4.2.3. Lyapunov exponents

An essential characteristic of chaos is the exponential sensitivity to initial conditions.
For a chaotic motion, two trajectories with slightly different initial conditions can
be expected to diverge exponentially in time. This feature can be measured by the
so-called Lyapunov exponent.

Beginning with a reference trajectory and a neighbouring trajectory, if the motion
is chaotic and the two trajectories diverge exponentially with time, we have

δ ∝ 2σt/τI , (4.2)

where δ is the distance between the two trajectories, and the dimensionless parameter
σ is the Lyapunov exponent. A positive value of the Lyapunov exponent is indicative
of chaos. To obtain the maximum Lyapunov exponent σm in the present case, we
apply the method of Wolf et al. (1995) which involves the reconstruction of pseudo-
phase space from time-history data. Figure 9 displays the time variations of the
Lyapunov exponents for the HOS and the MF results. In both cases, asymptotic
positive Lyapunov exponents are obtained for large time. For comparison, the result
for the small incident wave case of § 4.1 is also plotted. As expected, for this regular
motion, the value of the Lyapunov exponent approaches zero as time increases.
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obtained using HOS (M = 3) (- - -).

From figure 9, we also observe that the Lyapunov exponent for HOS is smaller
than that for the approximate MF solution. This can be expected since HOS accounts
for the effect of wave damping which reduces the extent of chaos.

4.2.4. Poincaré sections

The global behaviour of the buoy–cable system is elucidated by examining the
Poincaré sections of the motions in phase space. Figure 10 shows the Poincaré map in
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Figure 10. Poincaré map of the radial motion of the buoy for kIA = 0.13 obtained using HOS
(M = 3).

the buoy radial displacement–velocity plane for O(200) periods τI . The points appear
to fill a region and indicate chaotic orbits.

Assuming planar motion (see § 5), the complete Poincaré section of the buoy motion
represents a surface in four-dimensional space. Its projection onto a two-dimensional
plane such as the one in figure 10 does not therefore reveal a clear fractal structure
(see e.g. Moon 1992).

To obtain a Poincaré section showing the fractal structure, we consider a reduced
model of the problem by restraining the buoy motion to the radial direction only
(neglecting any coupling with the angular motion). The equation of motion (2.1) then
reduces to a simpler form (a piecewise linear dynamic system, see e.g. Holmes 1982)
for the radial motion r(t):

r̈ + bṙ + cr = (f sinωt+ a)/(M+Ma). (4.3)

The effect of wave damping is included in (4.3) using a linear damping term bṙ, where
b is a constant. To account for the cable snapping effect, we employ a restoring force
cr with c = ω2

nr for r > l0, and c = 0 otherwise, i.e. the restoring force is present only
when the cable is stretched. In (4.3), f sinωt represents the incident wave excitation
and a = 0.09ρgV is the net buoyancy of the sphere.

Starting with initial conditions, (4.3) can be integrated forward in time to obtain
the time history r(t). Using the model represented by (4.3), we are able to show
that there exists a threshold value of the excitation amplitude of f below which the
motion is regular and above which the motion is chaotic. Figure 11 shows a sample
result for r(t). The time history again displays the characteristic chaotic behaviour
and significantly also the switching between two competing A-, B-like modes.

Figure 12(a) shows a Poincaré plot in the (r, ṙ)-plane for O(20 000) periods of (4.3).
The points fill a region with a rich fractal structure. The presence of two (main)
competing modes can be elucidated by plotting the contributions to figure 12(a) from
modes A and B (defined, say, by negative peak amplitudes greater than rA for mode
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A and mode B otherwise). These are shown in figures 12(b) and 12(c) for rA = −5.
Thus the total Poincaré section appears to contain two main regions of attraction,
one (corresponding to mode A) lying outside another (corresponding to B). Figure 12
shows substantially more details such as fingering than figure 10 for the full system.
This is primarily due to the fact that the full system has more (two versus one)
degrees of freedom and the projection of its four-dimensional Poincaré map onto two
dimensions only partly reveals the full fractal structure.

4.3. Free-surface pattern

A motivation for this work is to obtain the free-surface disturbance above a buoy–
cable system such as the one we consider in the presence of ambient waves. Of
particular interest are the pattern and amplitudes, especially for short waves. In
view of the qualitatively different buoy–cable behaviours observed in the preceding
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sections, the free-surface disturbances are expected to be quite different depending on
whether the buoy–cable motions are regular (very small incident wave amplitude, no
cable snapping) or chaotic (moderate incident amplitude, cable snapping). Since the
MF approximation does not account for the wave diffraction/radiation effects, the
results presented here are all obtained using HOS (M = 3). Note that for clarity, in
all the following results for the surface elevation and spectrum, the contribution of
the incident wave itself is subtracted.

For sufficiently small incident amplitude, the buoy–cable motion is a regular pe-
riodic oscillation (cf. figure 3). The period of the buoy response is equal to that of
the incident wave and the response amplitude is, in general, comparable to that of
the incident wave. In this case, the free surface contains high-harmonic/short waves
as a result of non-linear wave–wave and wave–body interactions. The mth-harmonic
wave, m = 1, 2, . . ., has frequency mωI and has (free-wave) wavelength of λI/m

2, while
its amplitude scales as O(εm), in general.

For somewhat larger incident wave amplitude, the buoy–cable motion is no longer
regular/periodic, the overall dynamics is dominated by cable snapping and the re-
sponse is chaotic (cf. figures 6, 7). The frequency of the buoy response is broad band
(figure 8) and so also the resulting surface wave disturbance. This turns out to be
a remarkably effective mechanism for transferring energy from the incident wave to
high-frequency short waves.

4.3.1. Surface elevation

Figure 13 shows the time evolution of the free-surface elevation above the initial
(rest) position of the buoy for kIA = 0.016 and kIA = 0.13. For the small-amplitude
(kIA = 0.016) case, figure 13(a), a constant-amplitude (periodic at frequency ωI )
steady state is quickly reached after initial transients vanish. The diffracted/radiated
wave amplitude in this case is only approximately 1% that of the incident wave.
The diffracted/radiated wave elevation over the buoy for the larger incident wave
amplitude (kIA = 0.13) is plotted in figure 13(b) using the same scales. Not surprisingly,
the chaotic buoy motion produces an irregular free-surface elevation characterized
by the presence of substantial high-frequency content, and an order-of-magnitude
greater normalized (by incident amplitude) peak amplitudes.

The presence of two underlying modes of motion can also be discerned from
figure 13(b). The large-amplitude peaks in the surface elevation are associated with
and are precursors to the transitions from mode A to mode B. Since the (average)
kinetic energy of the buoy is higher in mode A than in mode B, the difference in
that energy is released to the free surface in the switching of the buoy motion from
A to B. This explains why in the MF simulations, mode B is never established in the
absence of this energy transfer mechanism.

Figure 14 shows the differences between the centreline (y = 0) free-surface profiles
for kIA = 0.016 versus 0.13. The instantaneous profiles are taken at the same time,
t/τI = 23, which corresponds to an instant just after a sudden release of energy
in a mode A to mode B transition by the buoy. Comparing the two profiles, the
substantial presence of short waves and overall larger normalized amplitude of the
radiated/diffracted waves as a result of snapping-induced chaotic motion of the buoy
are evident.

The three-dimensional wave pattern over the buoy is also of interest. Figure 15
shows sample free-surface snapshots at the same time instant t = 23τI for regular
and chaotic buoy motions. For regular buoy motion, the buoy dynamics is dominated
by radial r (heave) rather than angular θ (surge) motions in this case and the
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Figure 13. Time evolution of the free-surface elevation above the initial (rest) position of the
buoy for incident wave steepness (a) kIA = 0.016; and (b) kIA = 0.13. The incident wave itself is
subtracted.

free-surface elevation is approximately axisymmetric (figure 15a). The overall pattern
is thus roughly that due to a submerged vertical dipole of periodic strength. The
surface pattern associated with snapping chaotic motion, figure 15(b), is much more
interesting. The radiated/diffracted waves are now outweighed by short waves both
radially and circumferentially. The wavefield is now not axisymmetric but somewhat
dipole-like indicative of large surge motions of the buoy. From figure 15, it is also seen
that the overall normalized wave amplitudes are substantially greater for irregular
motion.

4.3.2. Spectra of the free-surface disturbance

From the point of view of remote observation, the wavenumber (and frequency)
spectra of the three-dimensional free-surface elevation as well as of the surface slope
are often of importance.

We first consider the time variation of the surface elevation ζ(0, 0, t) directly over
the (rest position of the) centre of the buoy. Figure 16 shows the frequency amplitude
spectrum of this elevation (shown in figure 13) for the two wave amplitude cases
we consider. For small incident amplitude (kIA = 0.016), the spectral amplitude
is dominated by that at the incident frequency ωI . This is evident from the wave
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Figure 14. Free-surface wave profiles on y = 0 at time t/τI = 23 for: kIA = 0.13 (——) and
kIA = 0.016 (- - -). The incident wave itself is subtracted.

elevation history (figure 13) and is consistent with the frequency spectrum of the buoy
motion (figure 5).

For kIA = 0.13, the surface amplitude spectrum shows broad-band features similar
to those of the buoy motion amplitude spectrum. It is noteworthy that the spectrum
for ζ(0, 0, t) is in fact appreciably broader than that for ∆r(t). The reason is associated
with the continuous spectrum of the free surface due to a submerged transient source
(cf. e.g. Wehausen & Laitone 1960, § 13γ). In terms of the broad-band response, the
wave disturbance can be considered to be in some sense more irregular or chaotic
than the underlying buoy motion. Thus the present system provides a very effective
mechanism of energy transfer from ωI to multiple (short-wave) frequencies.

The short-wave content of the free-surface disturbance can be seen even more
clearly in its wavenumber spectrum. For clarity, we consider first the surface elevation
along the x-axis (cf. figure 14). Figure 17 plots the one-dimensional wavenumber
(kx) amplitude spectra for ζ(x, 0, t) for regular and chaotic motions (normalized by
incident amplitude A). As expected, the spectral peak is at kx/kI = 1 for regular
motion (kIA = 0.016). For the chaotic case, the wavenumber spectrum is almost
constant with no apparent decrease at least up to kx/kI & 8 (this value being limited
by the spatial resolution of HOS). Comparing the two amplitude spectra, it is seen
that the (normalized) wave amplitude for chaotic motion can be two or more orders
of magnitude greater than that for regular motion for large kx/kI .

A more complete picture of the spectral content of the wave pattern is obtained
by plotting the two-dimensional wavenumber kx, ky amplitude spectra of the free-
surface elevation (shown in figure 15). These are displayed as contour (grey-scale)
plots in figure 18. For the regular motion case (kIA = 0.016), figure 18(a), the two-
dimensional spectrum is approximately axisymmetric consistent with underlying buoy
motions dominated by heave (radial motion) (cf. figure 15a). The diffracted/radiated
wave energy is centred around the incident wavenumber, k2

x + k2
y = k2

I , while small
amounts of energy (vaguely visible in the plot) can be found at higher harmonics as
a result of nonlinear interactions.



Mechanics of short-wave generation by a buoy 329

0.02

0.01

0

–0.01

–0.02
–1.5

–1.0
–0.5

0
0.5

1.0
1.5

1.5
1.0

0.5
0

–0.5
–1.0

–1.5x /kI

y /kI

f(
x,

 y
, t

)/
A

(a)

0.02

0.01

0

–0.01

–0.02
–1.5

–1.0
–0.5

0
0.5

1.0
1.5

1.5
1.0

0.5
0

–0.5
–1.0

–1.5x /kI

y /kI

f(
x,

 y
, t

)/
A

(b)

Figure 15. Instantaneous three-dimensional free-surface wave elevation (normalized by A) at time
t/τI = 23 for: (a) kIA = 0.016; and (b) kIA = 0.13. The incident wave itself is subtracted. Note that
the vertical scales are the same.

For larger incident wave amplitude, kIA = 0.13, the spectrum associated with
chaotic motion is dramatically different. Substantial amounts of wave energy from
the incident wavenumber is spread into high wavenumbers. With the exception of
several ring-like lighter bands, the spectral amplitude is appreciable in the entire two-
dimensional wavenumber space (cf. e.g. figure 17). Also unlike the regular motion case
(figure 18a), the two-dimensional spectrum for the chaotic motion is not completely
axisymmetric, but with somewhat more of diffracted/radiated wave energy in the
low |ky| wave-numbers. This is consistent with the observation of a non-axisymmetric
wave pattern (see figure 15b) and the presence of appreciable surge motions of the
buoy.

Finally, we show, in figure 19, the one-dimensional scalar wavenumber κ ≡ (k2
x +

k2
y)

1/2 spectra of the two-dimensional free-surface elevation for regular and chaotic
motions. Overall, the spectra behave similarly to the one-dimensional (kx) spectra of
the wave profile on y = 0 (cf. figure 17). For the regular motion case, kIA = 0.016, the
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Figure 16. Amplitude spectra of the free-surface elevation above the initial (rest) position of the
buoy for incident wave steepness: kIA = 0.13, ——; and kIA = 0.016, - - -. The incident wave itself
is subtracted.
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Figure 17. Wavenumber amplitude spectra of the free-surface wave elevation on y = 0 for:
kIA = 0.13 (——) and kIA = 0.016 (- - -). The incident wave itself is subtracted and the spectra are
averaged over three incident periods around t/τI = 23.

diffracted/radiated wave energy is concentrated at the incident wavenumber κ = kI
and vanishes as the wavenumber κ increases. For chaotic motions, kIA = 0.13, the
amplitude of the spectrum is nearly constant at least up to κ/kI & 8. Not surprisingly,
at larger wavenumbers, the spectral amplitude can be two or more orders of magnitude
greater than that for regular motions.

These results demonstrate the effectiveness of a submerged tethered buoy in trans-
ferring incident wave energy to high wavenumbers and frequencies. Relative to clas-
sical mechanisms of nonlinear wave–body interactions, the efficacy of cable snapping
and subsequent chaotic motion for short surface wave generation is truly remarkable.
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Figure 18. Two-dimensional wavenumber amplitude spectra of the free-surface wave elevation for:
(a) kIA = 0.016; and (b) kIA = 0.13. The incident wave itself is subtracted and the spectra are
averaged over three incident periods around t/τI = 23.

4.4. Criterion for the onset of chaos

The chaotic response of the tethered buoy under incident waves results from the
snapping of the cable. The snapping occurs whenever the tension in the cable is lost
in compression and is then regained rapidly. Based on this physical understanding, it
is possible to obtain a threshold value for the body motion amplitude above which
the cable will lose its tension at least for a part of the motion cycle. Since the body
motion is wave driven, this in turn provides a criterion for the onset of cable-snapping
and chaotic response in terms of a threshold incident wave amplitude.



332 Q. Zhu, Y. Liu, A. A. Tjavaras, M. S. Triantafyllou and D. K. P. Yue

10–4

10–5

10–6

10–7

0 1 2 876543

j/kI

f(j)
~

A

Figure 19. One-dimensional scalar wavenumber amplitude spectra of the free-surface wave elevation
for: kIA = 0.13 (——) and kIA = 0.016 (- - -). The incident wave itself is subtracted and the spectra
are averaged over three incident periods around t/τI = 23.

In general, this criterion for the onset of chaos in terms of incident wave amplitude
depends on the incident wavelength, the body geometry and submergence, and the
cable geometry and properties. For a given cable–buoy configuration/property, the
dependence of the threshold wave amplitude on the incident wavelength can be
obtained qualitatively. When the incident frequency is close to the natural frequencies
of the cable–buoy system, the response of the body is amplified and cable snapping
is obtained for smaller incident wave amplitudes. In the limit of low wave frequency,
the body moves with the fluid particles and cable snapping would occur when the
incident wave amplitude exceeds the static extension of the cable. In the other limit,
when wave frequency is high (relative to submergence/gravity), wave excitation is
rapidly attenuated and chaotic body response does not occur.

Such a criterion for onset of chaotic motions can also be obtained directly by
simulations. Figure 20 shows such results obtained by numerical simulations using
HOS varying kIA for a wide range of ωI/ωnr (ωnr is the fundamental natural frequency
of the buoy–cable in the radial direction). The behaviour supports well that based
on physical arguments above. Note that in figure 20, the appearance of a dip near
ωi/ωnr ∼ 0.5 is a result of nonlinear (second-order) double-frequency wave excitation.

From figure 20, we also conclude that for reasonably large incident amplitudes, cable
snapping and chaotic motions occur over a broad frequency band. While figure 20 is
obtained for a specific buoy–cable configuration, our numerical experiments confirm
that snapping/chaotic motion is a common phenomenon for a wide range of physical
and geometric parameters of such systems.

5. Discussion
In this paper, we study the coupled nonlinear dynamics of a submerged tethered

buoy in waves. Of interest are the resulting buoy motions, the associated free-
surface disturbance, and, in particular, nonlinear mechanisms for short surface wave
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Figure 20. Threshold value of the incident wave steepness as a function of wave frequency (relative
to natural heave frequency of the buoy–cable system) for the occurrence of cable snapping.

generation. We develop effective simulations of this problem by combining a robust
cable dynamics program (capable of modelling loss of tension and snapping) and a
high-order spectral method for the nonlinear wave–wave, wave–body interactions.

For demonstration, we choose a specific but typical buoy–cable system and incident
wavelength. Our numerical simulations show that for incident wave amplitudes above
some threshold value (depending on the buoy–cable configuration and wave fre-
quency), snapping of the cable occurs. The resulting buoy motions and the associated
surface disturbance then exhibit chaotic behaviours which we study using standard
methods. Of particular note in the chaotic dynamics is the switching between two
distinct chaotic snapping modes which occurs only when wave radiation damping
is accounted for. Analyses of the three-dimensional free-surface patterns and their
frequency and wave-number spectra reveal that cable snapping and chaotic buoy
motions provide a remarkably effective mechanism for transferring energy from the
incident wave to high-frequency short waves. Such a mechanism can be several orders
of magnitude more effective than that due to nonlinear wave–body interactions alone
in the absence of cable snapping.

Finally we remark on the assumption of planar motion of the buoy–cable system
in this work. For a planar incident wave, it has been shown that the buoy–cable
motion remains planar in the absence of cable snapping; but, not surprisingly, is
unstable to small out-of-plane disturbances when cable snapping and chaotic motions
are present (Tjavaras et al. 1998). Figure 21 shows a sample trajectory, projected onto
the horizontal (x, y)-plane, of a buoy under snapping/chaotic conditions but now
given a small initial displacement from the vertical symmetry (x, z)-plane. The three-
dimensional nature of the ensuing buoy motions is evident. In addition to such planar
instability effects, three-dimensional motions can also result from out-of-plane forcing
such as currents and non-symmetric vortex shedding. The coupled nonlinear/chaotic
dynamics involving three-dimensional buoy–cable motions is quite complex and is
the subject of current investigation.
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Figure 21. Projection on the horizontal (x, y)-plane of the three-dimensional trajectory of the buoy
for time t ∈ (0, 20τI ). The incident wave steepness is kIA = 0.13; and the buoy is given a small
initial displacement, Y (0)/A = 10−6, from the vertical symmetry (x, z)-plane.
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